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Abstract. A detailed tight-binding analysis of the electron band structure of the CuO2 plane of
layered cuprates is performed within aσ -band Hamiltonian including four orbitals—Cu 3dx2−y2

and Cu 4s, O 2px and O 2py . Both the experimental and theoretical indications in favour of a
Fermi level located in a Cu or O band, respectively, are considered. For these two alternatives,
analytical expressions are obtained for the linear combination of atomic orbitals (LCAO) electron
wave functions suitable for the treatment of electron superexchange. Simple formulae for
the Fermi surface and electron dispersions are derived by applying the Löwdin downfolding
procedure to set up the effective copper and oxygen Hamiltonians. They are used to fit the
experimental angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) Fermi surface of
Pb0.42Bi1.73Sr1.94Ca1.3Cu1.92O8+x and both the ARPES and local density approximation (LDA)
Fermi surface of Nd2−xCexCuO4−δ . The value of presenting the hopping amplitudes as surface
integrals ofab initio atomic wave functions is demonstrated as well. The same approach is applied
to the RuO2 plane of the ruthenate Sr2RuO4. The LCAO Hamiltonians including the three in-plane
π -orbitals Ru 4dxy , Oa 2py , Ob 2px and the four transverseπ -orbitals Ru 4dzx , Ru 4dyz, Oa 2pz,
Ob 2pz are considered separately. It is shown that the equation for the constant-energy curves and
the Fermi contours has the same canonical form as the one for the layered cuprates.

(Some figures in this article appear in black and white in the printed version.)

1. Introduction

After the discovery of the high-Tc superconductors the layered cuprates became one of the
most studied materials in solid-state physics. A vast range of compounds were synthesized
and their properties comprehensively investigated. The electron band structure is of particular
importance for understanding the nature of superconductivity in this type of perovskite [1].
Along these lines one can single out the significant success achieved in the attempts to reconcile
the photoelectron spectroscopy data [2] and the band-structure calculations of the Fermi surface
(FS) especially for compounds with simple structure such as Nd2−xCexCuO4−δ [3, 4]. A
qualitative understanding, at least for the self-consistent electron picture, has been achieved
and for most electron processes in the layered perovskites one can employ adequate lattice
models.

There has not been much analysis of the electronic band structures of the high-Tc
materials in terms of the single analytical expressions available. This is something for
which there is a clear need, in particular to help in the construction of more realistic
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many-body Hamiltonians. The aim of this paper is to analyse the common features
in the electron band structure of the layered perovskites within the tight-binding (TB)
method [5]. In the following we shall focus on the metallic (eventually superconducting)
phase only, with the reservation that the antiferromagnetic correlations, especially in the
dielectric phase, could substantially change the electron dispersions. It is shown that
the linear combination of atomic orbitals (LCAO) approximation can be considered an
adequate tool for analysing energy bands. Within the latter, exact analytic results are
obtained for the constant-energy contours (CEC). These expressions are used to fit the FS
of Nd2−xCexCuO4−δ [3], Pb0.42Bi1.73Sr1.94Ca1.3Cu1.92O8+x [6], and Sr2RuO4 [7] measured
in angle-resolved photoemission/angle-resolved ultraviolet spectroscopy (ARPES/ARUPS)
experiments.

In particular, by applying the L̈owdin perturbative technique for the CuO2 plane we give
the LCAO wave function of the states near the Fermi energyεF. These states could be useful
in constructing the pairing theory for the CuO2 plane. For the layered cuprates we find an
alternative concerning the Fermi-level location—Cu 3dx2−y2 versus O 2pσ character of the
conduction band. It is shown that analysis of extra spectroscopic data is needed in order for
this dilemma to be resolved. As regards the RuO2 plane, the existence of three pockets of the
FS unambiguously reveals the Ru 4dε character of the conduction bands [8,9].

To address the conduction bands in the layered perovskites we start from a common
Hamiltonian including the basis of valence states O 2p and Ru 4dε, or Cu 3dx2−y2 and Cu 4s,
respectively, for cuprates. Despite the equivalence of the crystal structures of Sr2RuO4 [10]
and La2−xBaxCuO4 [11], the states in their conduction band(s) are, in some sense, complem-
entary. In other words, for the CuO2 plane the conduction band is ofσ -character while for
the RuO2 plane the conduction bands are determined byπ -valence bonds. This is due to the
separation intoσ - andπ -part of the HamiltonianH = H(σ) +H(π) in the first approximation.
The latter two Hamiltonians are studied separately.

Accordingly, the paper is structured as follows. In section 2 we consider the genericH(4σ)

Hamiltonian of the CuO2 plane [12,13] andH(π) = H(xy) +H(z) is then studied in section 3.
The results of the comparison with the experimental data are summarized in section 4. Before
embarking on a detailed analysis, however, we give an account of some clarifying issues
concerning the applicability of the TB model and the band theory in general.

1.1. Apology to the band theory

It is well known that the electron band theory is a self-consistent treatment of the electron
motion in the crystal lattice. Even the classical three-body problem demonstrates strongly
correlated solutions, so it isa priori unknown whether the self-consistent approximation is
applicable when describing the electronic structure of every new crystal. However, the one-
particle band picture is an indispensable stage in the complex study of materials. It is the
analysis of experimental data using a conceptually clear band theory that reveals nontrivial
effects: how strong the strongly correlated electronic effects are, whether it is possible to take
into account the influence of some interaction-induced order parameter back into the electronic
structure etc. Therefore the comparison of the experiment with the band calculations is not an
attempt, as sometimes thought, to hide the relevant issues—it is a tool to reveal interesting and
nontrivial properties of the electronic structure.

Many electron band calculations have been performed for the layered perovskites and
results were compared to data from ARPES experiments. The shape of the Fermi surface
is probably the simplest test to check whether we are on the right track or whether some
conceptually new theory should be used from the very beginning.
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The tight-binding interpolation of the electronic structure is often used for fitting the
experimental data. This is because the accuracy of that approximation is often higher than the
uncertainties in the experiment. Moreover, the tight-binding method gives simple formulae
which could be of use for experimentalists to see how far they can get with such a simple-
minded approach. The tight-binding parameters, however, have in a sense ‘their own life’
independently of theab initio calculations. These parameters can be fitted directly to the
experiment even when, for some reasons, the electron band calculations could give wrong
predictions. In this sense the tight-binding parameters are the appropriate intermediary between
the theory and experiment. As for the theory, establishing of reliable one-particle tight-binding
parameters is the preliminary step in constructing more realistic many-body Hamiltonians. The
role of the band theory is, thus, quite ambivalent: on one hand, it is the final ‘language’ used
in efforts towards understanding a broad variety of phenomena; on the other hand, it is the
starting point in developing realistic interaction Hamiltonians for sophisticated phenomena
such as magnetism and superconductivity.

The tight-binding method is the simplest one employed in the electron band calculations
and it is described in every textbook in solid-state physics; the layered perovskites are now
probably the best-investigated materials and the Fermi surface is a fundamental notion in the
physics of metals. There is a consensus that the superconductivity of layered perovskites is
related to electron processes in the CuO2 and RuO2 planes of these materials. It is not, however,
fair to criticize a given study, employing the tight-binding method as an interpolation scheme
for the first-principles calculations, for not thoroughly discussing the many-body effects. The
criticism should rather be readdressed to theab initio band calculations. An interpolation
scheme cannot contain more information than the underlying theory. It is not erroneous if
such a scheme works with an accuracy high enough to adequately describe both the theory and
experiment.

In view of the above, we find it very strange that there are no simple interpolation formulae
for the Fermi surfaces available in the literature and that experimental data are being published
without an attempt towards simple interpretation. One of the aims of the present paper is to
help interpret the experimental data by the tight-binding method as well as setting up notions
in the analysis of theab initio calculations.

2. Layered cuprates

2.1. Model

The CuO2 plane appears as a common structural detail for all layered cuprates. Therefore,
in order to retain the generality of the considerations, the electronic properties of the bare
CuO2 plane will be addressed without taking into account structural details such as dimpling,
orthorhombic distortion, double planes, and surrounding chains. For the square unit cell with
lattice constanta0 a three-atom basis is assumed:{RCu,ROb,ROb} = {0, (a0/2, 0), (0, a0/2)}.
The unit cell is indexed by the vectorn = (nx, ny), wherenx, ny = integer. Within such an
idealized model the LCAO wave function spanned over the|Cu 3dx2−y2〉, |Cu 4s〉, |Oa 2px〉,
|Ob 2py〉 states reads as

ψLCAO(r) =
∑
n

[
XnψOa 2px (r −ROa − a0n) + YnψOb 2py (r −ROb − a0n)

+ SnψCu 4s(r −RCu− a0n) +DnψCu 3d(r −RCu− a0n)
]

(2.1)

where9n = (Dn, Sn, Xn, Yn) is the tight-binding wave function in lattice representation.
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The neglect of the differential overlap leads to an LCAO Hamiltonian of the CuO2 plane:

H =
∑
n

{
D†
n[−tpd(−Xn +Xx−1,y + Yn − Yx,y−1) + εdDn]

+ S†
n[−tsp(−Xn +Xx−1,y − Yn + Yx,y−1) + εsSn]

+ X†
n[−tpp(Yn − Yx+1,y − Yx,y−1 + Yx+1,y−1)

− tsp(−Sn + Sx+1,y)− tpd(−Dn +Dx+1,y) + εpXn]

+ Y †
n[−tpp(Xn −Xx−1,y −Xx,y+1 +Xx−1,y+1)

− tsp(−Sn + Sx,y+1)− tpd(Dn +Dx,y+1) + εpYn]
}

(2.2)

where the components of9n should be considered as being Fermi operators.εd, εs, and
εp stand respectively for the Cu 3dx2−y2, Cu 4s and O 2pσ single-site energies. The direct
Oa 2px → Ob 2py exchange is denoted bytpp and similarlytspandtpd denote the Cu 4s→ O 2p
and O 2p→ Cu 3dx2−y2 hoppings respectively. The sign rules for the hopping amplitudes
are sketched in figure 1—the bonding orbitals enter the Hamiltonian with a negative sign.
The latter follows directly from the surface integral approximation for the transfer amplitudes,
given in appendix A.
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Figure 1. A schematic diagram of a CuO2 plane (only orbitals relevant to the discussion are
depicted). The solid square represents the unit cell with respect to which the positions of the
other cells are determined. The indices of the wave-function amplitudes involved in the LCAO
Hamiltonian (2.2) are given in brackets. The rules for determining the signs of the hopping integrals
tpd, tsp, andtpp are shown as well.

For the Bloch states diagonalizing the Hamiltonian (2.2)

9n ≡


Dn
Sn
Xn
Yn

 = 1√
N

∑
p


Dp
Sp

eiϕaXp
eiϕbYp

 eip·n (2.3)
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whereN is the number of the unit cells; we use the same phases as in references [12, 13]:
ϕa = 1

2(px − π), ϕb = 1
2(py − π). This equation describes the Fourier transformation

between the coordinate representation9n = (Dn, Sn, Xn, Yn), with n being the cell index,
and the momentum representationψp = (Dp, Sp,Xp, Yp)of the TB wave function (when used
as an index, the electron quasi-momentum vector is denoted byp). Hence, the Schrödinger
equation ih̄ dt ψ̂p,α = [ψ̂p,α, Ĥ ] for ψp,α(t) = e−iεt/h̄ψp,α, with α being the spin index(↑,↓)
(suppressed hereafter), takes the form

(H (4σ)
p − ε11)ψp =


−εd 0 tpdsX −tpdsY

0 −εs tspsX tspsY
tpdsX tspsX −εp −tppsXsY
−tpdsY tspsY −tppsXsY −εp



Dp

Sp
Xp
Yp

 = 0 (2.4)

where

εd = ε − εd εs = ε − εs εp = ε − εp

and

sX = 2 sin( 1
2px) sY = 2 sin( 1

2py)

x = sin2( 1
2px) y = sin2( 1

2py)

06 px, py 6 2π.

This 4σ -band Hamiltonian is generic for the layered cuprates; cf. reference [13]. We have also
included the direct oxygen–oxygen exchangetpp dominated by theσ -amplitude. The secular
equation

det(H (4σ)
p − ε11) = Axy + B(x + y) + C = 0 (2.5)

gives the spectrum and the canonical form of the CEC with energy-dependent coefficients:

A(ε) = 16(4t2pdt
2
sp + 2t2sptppεd − 2t2pdtppεs− t2ppεdεs)

B(ε) = −4εp(t
2
spεd + t2pdεs) (2.6)

C(ε) = εdεsε
2
p.

Hence, the explicit CEC equation reads as

py = ±arcsin
√
y if 0 6 y = − Bx + C

Ax + B
6 1. (2.7)

This equation reproduces the rounded square-shaped FS, centred at the(π, π) point, inherent
to all layered cuprates. The best fit is achieved whenA, B, andC are considered as fitting
parameters. Thus, for a CEC passing through theD = (pd, pd) andC = (pc, π) reference
points, as indicated in figure 2, the fitting coefficients (distinguished by the subscript ‘f ’) in
the canonical equation

Af xy + Bf (x + y) + Cf = 0

have the form

Af = 2xd − xc− 1 xd = sin2(pd/2)

Bf = xc− x2
d xc = sin2(pc/2) (2.8)

Cf = x2
d(xc + 1)− 2xcxd

and the resulting LCAO Fermi contour is quite compatible with the LDA calculations for
Nd2−xCexCuO4−δ [4, 15]. Due to the simple shape of the FS, the curves just coincide. We
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Γ,Z

Γ,Z

Z,Γ

Z,Γ

XC

D

Figure 2. The LDA Fermi contour of Nd2−xCexCuO4−δ (dotted line) calculated by Yu and
Freeman [4] (reproduced with the kind permission of the authors), and the LCAO fit (solid line)
according to (2.5). The fitting procedure usesC andD as reference points.

note also that the canonical equation (2.5) would formally correspond to the one-band TB
Hamiltonian of a 2D square lattice of the form

ε(p) = −2t (cospx + cospy) + 4t ′ cospx cospy

with strong energy dependence of the hopping parameters, wheret ′ is the anti-bonding hopping
between the sites along the diagonal; cf. references [16,17].

2.2. Effective Hamiltonians

Studies of the electronic structure of the layered cuprates have unambiguously proved the
existence of a large hole pocket—a rounded square centred at the(π, π)point. This observation
is indicative for a Fermi level located in a single band of dominant Cu 3dx2−y2 character. To
address this band and the related wave functions it is therefore convenient for an effective Cu
Hamiltonian to be derived by L̈owdin downfolding of the oxygen orbitals. This is equivalent
to expressing the oxygen amplitudes from the third and fourth rows of (2.4):

X = 1

ηp

[
tpdsX

(
1 +

tpp

εp
s2
Y

)
D + tspsX

(
1− tpp

εp
s2
Y

)
S

]
Y = 1

ηp

[
−tpdsY

(
1 +

tpp

εp
s2
X

)
D + tspsY

(
1− tpp

εp
s2
X

)
S

] (2.9)

where

ηp = εp−
t2pp

εp
s2
Xs

2
Y

and substituting back into the first and the second rows of the same equation. Such a
downfolding procedure results in the following energy-dependent copper Hamiltonian:

HCu(ε) =


εd +

(2tpd)
2

ηp

(
x + y +

8tpp

εp
xy

)
(2tpd)(2tsp)

ηp
(x − y)

(2tpd)(2tsp)

ηp
(x − y) εs +

(2tpd)
2

ηp

(
x + y − 8tpp

εp
xy

)
 (2.10)
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which enters the effective Schrödinger equation

HCu

(
D

S

)
= ε

(
D

S

)
.

Thus, from (2.9) and (2.10) one can easily obtain an approximate expression for the eigenvector
corresponding to a dominant Cu 3dx2−y2 character. TakingD ≈ 1, in the lowest order with
respect to the hopping amplitudestll′ one has

|Cu 3dx2−y2〉 =


D

S

X

Y

 ≈


1

(tsptpd/εsεp)(s
2
X − s2

Y )

(tpd/ηp)sX

−(tpd/ηp)sY

 (2.11)

i.e. |X|2 + |Y |2 + |S|2 � |D|2 ≈ 1. We note that within this Cu scenario the Fermi-level
location and the CEC shape are not sensitive to thetpp-parameter. Therefore one can neglect the
oxygen–oxygen hopping as was done, for example, by Andersenet al [12,13] (the importance
of the tpp-parameter has been considered by Markiewicz [14]) and the band structure of the
Hamiltonian (2.10) for the same set of energy parameters as used in reference [13] is shown
in figure 3(a). In this case the FS can be fitted by its diagonal alone, i.e. using onlyD as a
reference point. Hence an equation for the Fermi energy is

A(εF)x
2
d + 2B(εF)xd + C(εF) = 0

which yieldsεF = 2.5 eV. As seen in figure 3(b), the deviation from the two-parameter fit,
discussed in section 2.1, is almost vanishing, thus justifying the neglect oftpp and the using of
a one-parameter fit.

Γ X M Γ
(a)

- 5
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0

2.5

5
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E
ne

rg
y

(e
V

)

Γ X Γ
(b)

Y

Γ

D

C

Figure 3. (a) The electron band structure of the 4σ -band Hamiltonian generic for the CuO2 plane
obtained using the parameters from reference [13] and the Fermi levelεF = 2.5 eV fitted from the
LDA calculation by Yu and Freeman [4]. (b) The LCAO Fermi contour (solid line) fitted to the
LDA Fermi surface (dashed line) for Nd2−xCexCuO4−δ [4] using onlyD as a reference point. The
deviation of the fit at theC point is negligible.

However, despite the excellent agreement between the LDA calculations, the LCAO fit,
and the ARPES data regarding the FS shape, the theoretically calculated conduction bandwidth
wc in the layered cuprates is overestimated by a factor of 2 or even 3 [3]. Such a discrepancy
may well point to some alternative interpretations of the available experimental data. In the
following section we shall consider the possibility for a Fermi level lying in an oxygen band.
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2.2.1. Oxygen scenario: the Abrikosov–Falkovsky model.There are currently various
indications in favour of O 2p character of the states near the Fermi level [18,19]. We consider
that these arguments cannot bea priori ignored. This is best seen if, following Abrikosov and
Falkovsky [20], the experimental data are interpreted within an alternative oxygen scenario.

Accordingly, the oxygen 2p level is assumed to lie above the Cu 3dx2−y2 level, and the
Fermi level to fall into the upper oxygen band,εd < εp < εF < εs. The Cu 3dx2−y2 band
is completely filled in the metallic phase and the holes are found to be in the approximately
half-filled O 2pσ bands. To inspect such a possibility in detail we use again the Löwdin
downfolding procedure now applied to Cu orbitals. From the first and second rows of (2.4)
we express the copper amplitudes as follows:

D = tpd

εd
(sXX − sY Y )

S = tsp

εs
(sXX + sY Y )

(2.12)

and substitute them in the third and the fourth rows. This leads to an effective oxygen
Hamiltonian of the form

HO(ε) = B
(
sXsX sXsY
sY sX sY sY

)
− teff

(
0 sXsY

sY sX 0

)
(2.13)

with the spectrum

ε(p) = 2B(ε)(x + y)

[
−1±

√
1 + (2τ + τ 2)

4xy

(x + y)2

]
(2.14)

where

B(ε) = − t
2
pd

εd
+

t2sp

(−εs)
teff(ε) = tpp + 2

t2pd

εd
τ(ε) = teff/B (2.15)

−εs, εd > 0 (2.16)

and the conduction band dispersion rateεc(p) corresponds to the ‘+’ sign for|τ | < 1. It should
be noted that (2.14) is an exact result within the 4σ -band model adopted. As a consequence, it
is easily realized that along the(0, 0)–(π, 0) direction the conduction band is dispersionless,
εc(px, 0) = 0. This corresponds to the extended Van Hove singularity observed in the ARPES
experiment [21] and we consider it as being an indication in favour of the oxygen scenario (the
copper model would give instead the usual Van Hove scenario).

Depending on theτ -value, two different limit cases occur. Forτ � 1 one gets a simple
Pad́e approximant:

εc(p) = 4teff(εc)
2xy

x + y
(2.17)

and the eigenvector ofH(4σ):

|c〉 =


D

S

X

Y

 ≈ 1√
s2
X + s2

Y


2tpd

εd
sXsY

0
−sY
sX

 (2.18)

normalized according to the inequality|D|2 + |S|2 � |X|2 + |Y |2 ≈ 1. This limit case
acceptably describes the experimental ARPES data e.g. for Nd2−xCexCuO4−δ, a material with
single CuO2 planes and no other complicating structural details. A schematic representation of
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the energy surface defined by (2.17) is shown in figure 4(a). In figure 4(b) we have presented
a comparison between the ARPES data from reference [3] and the Fermi contour calculated
according to (2.17) forx = 0.15. Note thatno fitting parametersare used and this contour
should be referred to as anab initio calculation of the FS.
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Figure 4. (a) The energy dispersion of the nonbonding oxygen bandεc(p), equation (2.17). A
few cuts through the energy surface, i.e. CEC, are presented together with the dispersion along
the high-symmetry lines in the Brillouin zone. (b) The Fermi surface of Nd2−xCexCuO4−δ (solid
line) determined from equation (2.17) forx = 0.15 (the shaded slice in panel (a)) and compared
with experimental data (points with error bars) for the same value ofx; after Kinget al [3]. θ and
ϕ denote the polar and azimuthal emission angles, respectively, measured in degrees. The empty
dashed circles showk-space locations where ARPES experiments have been performed (cf. figure 2
in reference [3]) and their diameter corresponds to 2◦ experimental resolution.

The opposite limit caseteff � B, i.e.τ � 1, has been analysed in detail by Abrikosov and
Falkovsky [20]. The conduction band dispersion rateεc and the corresponding eigenvector of
the HamiltonianHO (2.13) now take the form

εc(p) = 4teff(εc)
√
xy (2.19)

|c〉 ≈ 1√
2


(tpd/εd)(sX + sY )

(tsp/εs)(sX − sY )
1

−1

 (2.20)

provided that|D|2 + |S|2 � |X|2 + |Y |2 ≈ 1. In other words, the last approximation,
τ � 1, corresponds to a pure oxygen model where only hoppings between oxygen ions
are taken into account. Clearly, this model is complementary to the copper scenario and
is based on an effect completely neglected in its copper ‘counterpart’, wheretpp ≡ 0.
This limit case of the oxygen scenario suitably describes the ARUPS experimental data for
Pb0.42Bi1.73Sr1.94Ca1.3Cu1.92O8+x [6]. The FS of the latter is fitted by its diagonal (theD point)
according to the Abrikosov–Falkovsky relation (2.19) and the result is shown in figure 5.

There exist a tremendous number of ARPES/ARUPS data for layered cuprates which
makes the reviewing of all of those spectra impossible. To illustrate our TB model we have
chosen data for the Pb substitution for Bi in Bi2Sr2CaCu2O8; see figure 5. In this case the CuO2

planes are quite flat and the ARPES data are not distorted by structural details. When present,
distortions were misinterpreted as a manifestation of strong antiferromagnetic correlations. We
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Figure 5. (a) The ARUPS Fermi surface of Pb0.42Bi1.73Sr1.94Ca1.3Cu1.92O8+x given by Aebi
et al [6]. (b) The LCAO fit to (a) according to the Abrikosov–Falkovsky model [20], using theD
reference point withpd = 0.171× 2π .

believe, however, that the experiment by Aebiet al [6] reveals the main feature of the CuO2

plane band structure—the large hole pocket found to be in agreement with the one-particle
band calculations.

Besides the good agreement between the theory and the experiment, regarding the FS
shape, we should also point out the compatibility between the calculated and the experimental
conduction bandwidth. Indeed, within the Abrikosov–Falkovsky model [20], according
to (2.19), one gets for the conduction bandwidth 06 εc(p) 6 wc ≈ 4tpp, which coincides
with the value obtained from (2.17) provided thatt2pd� tpp(εF− εd). Theab initio calculation
of tpp as a surface integral (see appendix A), making use of atomic wave functions standard
for the quantum mechanical calculations, givestpp ≈ 200–350 meV in different estimations.
This range is in acceptable agreement with the experimentalwc ' 1 eV [3]; within the LCAO
model an exact analytic result forwc can be obtained from the equation

wc = 4tpp + 8t2pd/(wc− εd).

We note also that the TB analysis allows the bands to be unambiguously classified with
respect to the atomic levels from which they arise. Within such terms, for the oxygen scenario
one can describe the metal→ insulator transition as being the charge transfer

Cu1+O
11

2−
2 → Cu2+O2−

2 .

The possibility for monovalent copper Cu1+ in the superconducting state is discussed, for
example, by Romberget al [22].

3. Conduction bands of the RuO2 plane

Sr2RuO4 is the first copper-free perovskite superconductor isostructural to the high-Tc
cuprates [10]. The layered ruthenates, just like the layered cuprates, are strongly anisotropic
and in a first approximation the nature of the conduction band(s) can be understood by analysing
the bare RuO2 plane. One should repeat the same steps as in the previous section, but now
having Ru instead of Cu and the Fermi level located in the metallic bands of Ru 4dπ character.
To be specific, the conduction bands arise from the hybridization between the Ru 4dxy , Ru 4dyz,
Ru 4dzx and Oa 2py , Ob 2px , Oa,b 2pz π -orbitals. The LCAO wave function spanned over the
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four orbitals perpendicular to the RuO2 plane reads as

9
(z)
LCAO(r) =

1√
N

∑
p

∑
n

[
Dzx,nψRu 4dzx (r − a0n) +Dzy,nψRu 4dzy (r − a0n)

+ eiϕaZa,nψOa 2pz (r −ROa − a0n) + eiϕbZb,nψOb 2pz (r −ROb − a0n)
]
eip·n.

(3.1)

Hence, theπ -analogue of (2.4) takes the form

(H (z)
p − ε11)ψ(z)

p =


−εzx 0 tz,zxsX 0

0 −εzy 0 tz,zysY
tz,zxsX 0 −εza −tzzcXcY

0 tz,zysY −tzzcXcY −εzb



Dzx

Dzy

Za

Zb

 = 0 (3.2)

where

εzx = ε − εzx εza = ε − εza cX = 2 cos(px/2)

εzy = ε − εzy εzb = ε − εzb cY = 2 cos(py/2)
(3.3)

andεzx , εzy , εza, andεzb are the single-site energies respectively for Ru 4dzx , Ru 4dzy , Oa 2pz,
and Ob 2pz orbitals. tzz stands for the hopping between the latter two orbitals and, if a
negligible orthorhombic distortion is assumed, the metal–oxygenπ -hopping parameters are
equal,tz,zy = tz,zx , and alsoεz = εza = εzb. The phase factors eiϕa,b in (3.1) are chosen in
compliance with reference [13]; see equation (2.3).

Identically, writing the LCAO wave function spanned over the three in-planeπ -orbitals
Ru 4dxy , Oa 2py , and Ob 2px in the way in which (3.1) is designed, one has for the ‘in-plane’
Schr̈odinger equation

(H (xy)
p − ε11)ψ(xy)

p =
 −εxy tpdπsX tpdπsY

tpdπsX −εya t ′ppsXsY

tpdπsY t ′ppsXsY −εxb

(Dxy

Ya

Xb

)
= 0 (3.4)

wheretpdπ denotes the hopping Ru 4dxy → Oa,b 2pπ andt ′pp denotes the hopping Oa 2py →
Ob 2px . The definitions for the other energy parameters are in analogy to (3.3) (for negligible
orthorhombic distortion,εya = εxb 6= εz). Thus, theπ -Hamiltonian of the RuO2 plane takes
the form

H(π) =
∑

p,α=↑,↓
ψ(z)†
p,α H

(z)
p ψ(z)

p,α +ψ(xy)†
p,α H (xy)

p ψ(xy)
p,α . (3.5)

In a previous paper [23] we derived the corresponding secular equations, and now we shall
just provide the final expressions in terms of the notation used here:

det(H (z,xy)
p − ε11) = A(z,xy)xy + B(z,xy)(x + y) + C(z,xy) = 0

A(z) = 16(t4z,zx − t2zzε2
zx) A(xy) = 32t ′ppt

2
pdπ − 16εxyt

′2
pp

B(z) = −16t2zzε
2
zx − 4t2z,zxεzxεz B(xy) = −t2pdπεya

C(z) = ε2
zx(ε

2
z − 16t2zz) C(xy) = εxyε2

ya.

(3.6)

The three sheets of the Fermi surface in Sr2RuO4 fitted to the ARPES data given by Lu
et al [7] are shown in figure 6(b). To determine the Hamiltonian parameters we have made
use of the dispersion rate values at the high-symmetry points of the Brillouin zone. To the
best of our knowledge, the TB analysis of the Sr2RuO4 band structure was first performed
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Figure 6. (a) The LCAO band structure of Sr2RuO4 according to (3.5). The Fermi level (dashed
line) crosses the three Ru 4dε bands of the RuO2 plane. (b) The LCAO fit (solid lines) to the
ARPES data (circles) given by Luet al [7]; cf. also reference [23].

in reference [23] (subsequently, the latter results were reproduced in reference [25] without
referring to reference [23]). The RuO2-plane band structure resulting from the set of parameters

tzz = t ′pp = 0.3 eV εz = −2.3 eV εxy = −1.62 eV
tpdπ = tz,zx = 1 eV εzx = −1.3 eV εya,xb = −2.62 eV

(3.7)

is shown in figure 6(a). This fit is subject to the requirement of providing as good as possible a
description of the narrow energy interval aroundεF, whereas the filled bands far below the Fermi
level match only qualitatively to the LDA calculations by Oguchi [8] and Singh [9]. In addition
we note that the de Haas–van Alphen (dHvA) measurements [26] of the Sr2RuO4 FS differ
from the ARPES results [7]. Thus, fitting the dHvA data by using modified TB parameters
is a natural refinement of the proposed model. We note that the diamond-shaped hole pocket,
centred at the X point (see figure 6(b)), is very sensitive to the ‘game of parameters’. For that
band the Van Hove energy is fairly close to the Fermi energy. As a result, a minor change in
the parameters could drive a Van Hove transition transforming this hole pocket to an electron
one, centred at the0 point. Indeed, such a band configuration has been recently observed also
in the ARPES revision of the Sr2RuO4 Fermi surface [24]. This can be easily traced already
from the energy surfacesε(p) calculated earlier in reference [23]. The comparison of the
ARPES data with TB energy surfaces could be a subject of a separate study.

4. Discussion

The LCAO analysis of the layered perovskites band structure, performed in the preceding
sections, manifests a good compatibility with the experimental data and the band calculations
as well. Due to the strong anisotropy of these materials, their FS within a reasonable approx-
imation are determined by the properties of the bare CuO2 or RuO2 planes.

Despite these planes having identical crystal structures, their electronic structures
are quite different. While for the RuO2 plane the Fermi level crosses metallicπ -
bands, the conduction band of the CuO2 plane is described by theσ -Hamiltonian (2.4).
The latter gives for the CuO2 plane a large hole pocket centred at the(π, π) point.
Its shape, if no additional sheets exist, is well described by the exact analytic
results within the LCAO model, equation (2.5), as found for Nd2−xCexCuO4−δ [3, 4]
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and Pb0.42Bi1.73Sr1.94Ca1.3Cu1.92O8+x [6]. For a number of other cuprates, namely
YBa2Cu3O7−δ [27], YBa2Cu4O8 [21], Bi2Sr2CaCu2O8 [28,29], Bi2Sr2CuO6 [30], the infinite-
layered superconductor Sr1−xCaxCuO2 [31], HgBa2Ca2Cu3O8+δ [32], HgBa2CuO4+δ [33],
HgBa2Can−1CunO2n+2+δ [34], Tl2Ba2Can−1CunO4+2n [1], Sr2CuO2F2, Sr2CuO2Cl2, and
Ca2CuO2Cl2 [35], this large hole pocket is easily identified. For all of the above compounds,
however, its shape is usually deformed due to appearance of additional sheets of the Fermi
surface originating from accessories of the crystal structure.

As the most important implication for the CuO2 plane we should point out the intrinsic
alternative as regards the Fermi-level location (see section 2). It is commonly believed that the
states at the FS are of dominant Cu 3dx2−y2 character (see e.g. reference [13]). Nevertheless,
the spectroscopic data for the FS can be equally well interpreted within the oxygen scenario,
according to which the FS states are of dominant O 2pσ character. A number of indications
exist in favour of the oxygen model and the importance of thetpp-hopping amplitude [14,18]:

(i) O 1s→ O 2p transitions observed in EELS experiments for the metallic phase of the
layered cuprates, which reveal an unfilled O 2p atomic shell;

(ii) the oxygen scenario reproduces in a natural way the extended Van Hove singularity
observed in the ARPES experiments while the Cu scenario fails to describe it;

(iii) the metal–insulator transition can be easily described;
(iv) the width of the conduction band is directly related to the atomic wave functions.

Some authors even ‘wager that the oxygen model will win’ [19] (if the oxygen scenario is
corroborated, due to the cancellation of the largest amplitudetsp the small hoppingstpd andtpp

should be properly evaluated eventually as surface integrals (see appendix A) and some band
calculations may well need a revision). It would be quite valuable if a muffin-tin calculation
for the H+

2 ion was performed and compared with the exact results when the hopping integral
is comparatively small, of the order of the one that fits the ARPES data,tpp ∼ 200 meV. We
also note that even the copper model gives an estimation fortpp closer to the experiment than
the LDA calculations. The smallness oftpp within the oxygen scenario, on the other hand, is
guaranteed by the nonbonding character of the conduction band. This scenario, therefore, can
easily display heavy-fermion behaviour, i.e. an effective mass

meff
tpp→0−→ huge

and a density of states(DOS) ∝ meff ∝ 1/tpp (we note that no realistic band calculations
for heavy-fermion systems can be performed without employing the asymptotic methods from
atomic physics). It is also instructive to compare the TB analyses of heavy-fermion systems and
layered cuprates. The alternatives for the Fermi-level location (metallic versus oxygen band)
exist for the cubic bismuthates as well [43,44]. When the Fermi level falls into heavy-fermion
oxygen bands, one of the isoenergy surfaces is a rounded cube [43]. Indeed, such an isoenergy
surface has been recently confirmed by the LMTO method applied to Ba0.6K0.4BiO3 [45].

Due to the equally good fit of the results for the FS of the layered cuprates within the
two models, we can infer that at present any final judgment about this alternative would
be premature. Thus far we consider that the oxygen model should be taken into account
in the interpretation of the experimental data. Moreover, the angular dependence of the
superconducting order parameter1(p) ∝ cos(px) − cos(py) is readily derived within the
standard BCS treatment of the oxygen–oxygen superexchange [36]. Analysis of some extra
spectroscopic data by means of different models would finally resolve this dilemma. This
cannot be done within the framework of the TB method. A coherent picture requires a thorough
study, where the TB model is just a useful tool for testing the properties of a given solution.
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Up to now, the applicability of the LCAO approximation to the electron structure of
the layered cuprates can be considered as being proved. The basis function of the LCAO
Hamiltonian can be included in a realistic one-electron part of the lattice Hamiltonians for
the layered perovskites. This is an indispensable step preceding the inclusion of the electron–
electron superexchange, electron–phonon interaction or any other kind of interaction between
conducting electrons.
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Appendix A. Calculation of the O–O hopping amplitude by the surface integral method

From quantum mechanics [37] it is well known that the usual quantum chemistry calculation
of the hopping integrals as matrix elements of the single-particle Hamiltonian does not work
when the overlap between the atomic functions is too weak. If the hopping integrals are
much smaller than the detachment energy, they should be calculated as surface integrals using
(eventually distorted by the polarization) atomic wave functions.

Such an approach has been applied by Landau and Lifshitz [37] and Herring and Flicker
[38] to the simple H+2 problem and now the asymptotic methods are well developed in the
physics of atomic collisions [39]. On the basis of the above problem one can easily verify
that the atomic sphere muffin-tin approximation of the Coulomb potentials usual in condensed
matter physics undergoesfiascowhen the hopping integrals are of the order of 200–300 meV.
Therefore, the factor 2–3 misfit for a single-electron problem cannot be ascribed to the strong-
correlation effects, renormalizations, and other incantations which are often used to account
for the discrepancy between the experimental bandwidth and the LDA calculations.

Usually, condensed matter physics does not need asymptotically accurate methods for
calculation of hopping integrals, which leads to zero overlap between the muffin-tin and
asymptotic methods. However, for the perovskites the largest hoppingtsp cancels in the
expression for the upper oxygen bandεc(p). Thus, small hoppings become essential, but
having no influence on the other bands, and the necessity of taking into accounttpp is of
topological nature.

Following the calculations for H+2 [37], in a simplified picture of two oxygen atoms Oa, Ob

separated by distanced = (√2/2)a0 the surface integral method gives for the oxygen–oxygen
exchange the following explicit expression:

tpp = h̄2

2m

∫ ∫
S
(ψOa ∂zψOb − ψOb ∂zψOa) dx dy (A.1)

where the integral is taken over the surfaceS bisectingd, andm is the electron mass. Thus
tpp = tpp(ξ) is a function ofξ = κ|ROa−ROb|with κ2/2 being the oxygen detachment energy
in atomic units and the detailed derivation of (A.1) can be found, for example, in reference [39].

We note that the derivation oftpp(ξ) imposes no restrictions on the basis set{ψ} used.
Hence we choose{ψOa,b} to be the simplest minimal (MINI) basis used [40], for example, in
the GAMESS package for doingab initio electronic structure calculations [41]. The MINI
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bases are three Gaussian expansions of each atomic orbital. The exponents and contraction
coefficients are optimized for each element, and the s and p exponents are not constrained to
be equal.

Accordingly, the oxygen 2p radial wave functionR2p(r) is replaced by a Gaussian exp-
ansionR(G)2p (r) and has the form

R
(G)
2p (ζ, r) =

3∑
i=1

C2p,ig2p,i (ζ2p,i , r) (A.2)

whereg2p(ζ, r) = A2p,ie−ζ2p,i r
2
, and the coefficients for oxygen are given in table A1. It is

then normalized to unity according to∫ ∞
0
R
(G)2
2p r2 dr = 1.

Table A1. Coefficients for the oxygen 2p wave function in the MINI basis [41].

i C2p,i A2p,i ζ2p,i

1 8.2741400 2.485782 0.708520
2 1.1715463 1.333720 0.476594
3 0.3030130 0.263299 0.130440

By multiplying with the corresponding cubic harmonic, the oxygen wave functions are
brought into the form

ψOa(ra) = R(G)2p (ζ, ra)

√
3

4π

xa

ra

{
ra = r −ROa

ra = |ra|
(A.3)

and analogously forψOb(r −ROb). Substituting (A.3) in (A.1) we get

t (MINI )
pp = 340 meV.

In reference [42] the same integral has been calculated with{ψ} being the asymptotic wave
functions [39] appropriately tailored to the MINI basis at their outermost inflection points
r(i), i.e.

R2p(r) =


R
(G)
2p (r) r 6 r(i)

A

√
2κ

r
e−κr r > r(i)

(A.4)

with κ = 0.329 andA = 0.5. The value obtained is

t (asymp)
pp = 210 meV

which is found to be in good agreement with that fitted from the ARPES experiment within
the oxygen scenario. A similar calculation gives, for example, for thetpd- andtsp-hoppings

t
(MINI )
pd = 580 meV t (MINI )

sp ∼ 2.5 eV.

Note added in proof. In a very recent paper by Campuzanoet al [46] the ARPES Fermi surface of pure
Bi2Sr2CaCu2O8+δ has been presented in the inset of their figure 1(a). This experimental finding is in excellent
agreement with our tight-binding fit to the Fermi surface of Pb0.42Bi1.73Sr1.94Ca1.3Cu1.92O8+x , studied by Schwaller
and co-workers in reference [6], given in figure 5 of the present paper. The remarkable coincidence of the Fermi
surfaces of these two compounds is a nice confirmation that Pb substitution for Bi is irrelevant for the band structure
of the CuO2 plane and the Fermi surface of the latter is therefore revealed to be a common feature.
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